

# Network Analysis: Anatoly Zhitlukhin

## 1. Role and Significance

Anatoly Zhitlukhin is a central figure in Russia's state-directed research into advanced plasma physics and compact fusion concepts, serving as the Director of Magnetic and Optical Research at the State Research Center Troitsk Institute of Innovative & Thermonuclear Research (TRINITI), a key subsidiary of the State Nuclear Corporation "Rosatom". His role transcends that of a purely academic researcher; he is a lead developer of the critical hardware and enabling technologies that form the foundation of Russia's ambitions in next-generation energy and propulsion. His work is focused on creating a vertically integrated capability stack, centered on high-power pulsed plasma accelerators and their associated megajoule-class energy storage systems, positioning him as a principal architect of a dual-use research program with profound strategic implications. This focus on building powerful, functional hardware before a fully-fledged compact torus experiment is operational indicates a "hardware first" development philosophy. This approach prioritizes mastering the difficult engineering of the core enabling technologies, suggesting a long-term, patient strategy aimed at building a robust and versatile platform capable of supporting multiple future applications, from materials science to fusion energy and advanced propulsion systems. The tangible engineering foundation laid by Zhitlukhin's group provides the necessary technical credibility for the more conceptual "thermonuclear motor" ambitions identified within the broader Russian research ecosystem.

## 2. Academic & Mentorship Network

### Mentors

A significant intelligence gap exists regarding the specific doctoral advisors and senior mentors who shaped Anatoly Zhitlukhin's early career, as no direct evidence is present in the available documentation. However, an analysis of the hierarchical structure of Russian nuclear science and his institutional affiliations allows for a medium-confidence assessment that his academic and professional lineage originates within the broader ecosystem of the Kurchatov Institute. The Kurchatov Institute is the historical and political center of gravity for all Soviet and Russian fusion research, and its influence permeates all subsidiary institutions like TRINITI. A 2010 international conference program explicitly lists Zhitlukhin's affiliation as "RRC 'Kurchatov Institute', " suggesting a deep and potentially foundational link to the nation's premier nuclear research center, even while his primary operational base is TRINITI. This connection implies his work is sanctioned, overseen, and intellectually rooted at the highest levels of the Russian nuclear establishment.

### Protégés

Zhitlukhin has cultivated a core team of researchers at TRINITI who have consistently co-authored publications with him over many years. These individuals are not transient students but long-term collaborators, representing the next generation of Russian specialists in the niche and strategically vital fields of pulsed power, plasma diagnostics, and plasma-material

interactions. This group forms a dedicated and experienced research cadre responsible for the day-to-day operation of TRINITI's unique experimental facilities.

| Name            | Primary Affiliation(s)                                     | Assessed Role & Expertise                          | Key Collaborative Projects/Publications                                                                                                                                                      |
|-----------------|------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V.L. Podkovyrov | TRINITI                                                    | Senior Scientist, Accelerator Operations           | Co-author on numerous studies of plasma-surface interactions and accelerator experiments. Central to the operation and diagnostic analysis of the QSPA and MK-200 facilities.                |
| N.S. Klimov     | TRINITI                                                    | Lead Researcher, Plasma-Material Interactions      | Key author on multiple papers with Zhitlukhin focusing on material erosion under ITER-like transient loads and the operation of the QSPA and MK-200 plasma guns.                             |
| I.M. Poznyak    | TRINITI, Moscow Institute of Physics and Technology (MIPT) | Research Scientist, Diagnostics & Modeling         | Core team member on plasma gun experiments and diagnostic development. Dual affiliation with MIPT suggests a role in recruiting and training new talent from a premier technical university. |
| D.A. Toporkov   | TRINITI                                                    | Research Scientist, Plasma Accelerator Experiments | Frequent collaborator on experiments conducted at TRINITI's MK-200 facility, focusing on the interaction of high-energy plasma flows with various targets.                                   |

### Key Co-authors

Zhitlukhin's most significant co-authorships are with international collaborators, primarily from Western European fusion programs. These relationships represent a direct, sanctioned, and high-value vector for knowledge transfer. The collaborations are centered on the use of

TRINITI's unique plasma gun facilities for testing materials for the International Thermonuclear Experimental Reactor (ITER) project, creating a formal channel for deep technical exchange between the Russian state nuclear program and its European counterparts.

| International Collaborator | Home Institution (Country)                                    | Project/Topic of Collaboration                                                                                              | Key Joint Publication(s)                                                                                                         |
|----------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Mario Merola               | ITER Organization, Fusion for Energy (F4E) (International/EU) | Plasma-Facing Components (PFCs) for ITER; Testing of tungsten and beryllium targets under simulated transient plasma loads. | Co-author on multiple papers from 2009-2015 detailing material testing at TRINITI's QSPA facility for the ITER divertor program. |
| Gianfranco Federici        | ITER Organization (International/EU)                          | Plasma-Surface Interactions; ITER divertor and first-wall materials.                                                        | Co-author on a 2007 paper in the <i>Journal of Nuclear Materials</i> with Zhitlukhin's team on plasma-material interactions.     |
| Jochen Linke               | Forschungszentrum Jülich (Germany)                            | High Heat Flux Materials; Testing of tungsten and carbon-fiber composite (CFC) materials for fusion applications.           | Co-author on a 2009 paper in the <i>Journal of Nuclear Materials</i> with Zhitlukhin's team on material testing.                 |

### 3. Professional & Institutional Network

#### Primary Affiliation

Zhitlukhin's professional life is centered at the **State Research Center TRINITI**, which functions as a pulsed power forge for the Russian nuclear enterprise. His work there is not on a single, integrated fusion device but on the development and operation of the strategic hardware assets required to conduct research in this domain. A technical deconstruction of his key projects reveals a systematic approach to building a foundational capability in high-energy-density plasma physics.

- **2.2 Megajoule Capacitor Bank:** This is a strategic asset, not merely a power supply. A stored energy of 2.2 MJ places this device in the class required to power the large theta-pinch coils used to form and compress high-density FRCs. Its development signals a commitment to building hardware capable of exploring fusion-relevant plasma regimes necessary for both energy and propulsion applications.
- **Pulsed Plasma Accelerator:** This is the core dual-use technology at Zhitlukhin's disposal. The same accelerator used to generate high-heat-flux plasma streams to test materials for ITER can be reconfigured to accelerate discrete plasmoids. The fundamental physics of plasma acceleration is central to both applications. This provides the program with a versatile experimental platform where advances in accelerator technology, diagnostics, and control, ostensibly for the unclassified international collaboration, can be directly applied to more sensitive propulsion-related research.
- **Compact Neutron Source:** This project, which aims to generate neutrons from the head-on collision of high-speed deuterium plasmoids, serves as a powerful demonstration

of advanced capability. It proves that Zhitlukhin's team has mastered not only the generation of plasmoids but also their precise guidance, control, and collision. This is a technique directly analogous to the colliding-plasmoid FRC fusion concept pursued by commercial U.S. companies like Helion Energy, indicating a parallel level of technical sophistication in plasmoid manipulation.

## Secondary Affiliations

Zhitlukhin's primary secondary affiliation is not with a university or another Russian institute, but with the international **ITER project**. His team leverages TRINITI's unique experimental facilities—the quasi-stationary plasma accelerator **QSPA-T** and the pulsed plasma gun **MK-200**—to position itself as an indispensable partner for the global fusion community. These facilities are uniquely capable of simulating the extreme transient heat loads, such as Edge-Localized Modes (ELMs) and plasma disruptions, that are expected to occur in the ITER tokamak. Replicating these conditions, with heat loads exceeding  $1 \frac{MJ}{m^2}$ , is difficult and expensive to achieve elsewhere, creating a strategic dependency. This symbiotic relationship provides TRINITI with international prestige and a legitimate channel for deep technical interchange with Western experts. The reliance of the multi-billion-Euro ITER project on TRINITI's testing capabilities creates an active intelligence collection vector for the Russian program. To validate their designs, European institutions and their industrial partners must send their most advanced prototype materials, such as tungsten macrobrush targets and beryllium components, to Zhitlukhin's lab for testing. This provides his team with direct, hands-on access to the West's latest plasma-facing component material science. They can conduct detailed analysis on these materials before, during, and after exposure, gaining invaluable data on their thermomechanical properties, failure modes, and microstructural response. This represents a significant flow of high-value technical intelligence on advanced materials—sanctioned and facilitated by the international collaboration—that can be directly fed back into Russia's own clandestine programs, which may have even more demanding material requirements for pulsed, high-power-density propulsion systems.

## 4. Inferred Knowledge Transfer Vectors

The network map of Anatoly Zhitlukhin reveals several distinct pathways for the transfer of knowledge and technology, with the most significant vector being a fully sanctioned, public-facing international collaboration.

### Institutional Collaboration (Primary Vector)

The formal collaboration with the ITER project is assessed as the most significant, high-volume, and lowest-risk pathway for knowledge transfer. This vector, which can be termed the "ITER Front Door," operates through multiple, mutually reinforcing mechanisms:

1. **Direct Access to Advanced Materials:** Zhitlukhin's team receives and tests the most advanced plasma-facing component prototypes developed by European institutions and their industrial partners.
2. **Shared Experimental Data:** The nature of the collaboration necessitates the sharing of detailed experimental data on material performance under extreme plasma loads, providing the Russian program with benchmarked performance data on Western

materials.

3. **Co-authored Publications:** The joint publications with senior European program leaders like Mario Merola require deep technical interchange on diagnostics, computer modeling, and the interpretation of results, fostering a common understanding and vocabulary.
4. **Personal Networks:** The long-term nature of the collaboration builds personal relationships and trust between Zhitlukhin's team and the senior leadership of the European fusion program, facilitating informal exchanges of information.

This vector allows for the transfer of not just explicit knowledge (data, papers, material samples) but also invaluable tacit knowledge—the unwritten experimental techniques, operational know-how, and diagnostic methodologies that are critical for advancing complex, hands-on technology.

## Human Capital (Secondary Vector)

The cadre of specialists cultivated by Zhitlukhin at TRINITI—including individuals like Podkopyrov, Klimov, and Poznyak—represents a high-value pool of human capital with deep expertise in pulsed power and experimental plasma physics. While no direct transfers of these specific individuals to Western institutions are documented in the provided material, there is an established precedent for such a pathway. The case of **I.V. Romadanov**, a researcher from the foundational Russian academic track on compact toroids, who transitioned to the Princeton Plasma Physics Laboratory (PPPL) in the United States, demonstrates that this is a known and plausible vector for human capital transfer. Zhitlukhin's team, therefore, constitutes a mature talent pool that could be targeted for recruitment by Western intelligence or research programs seeking to acquire specific, hard-to-replicate expertise in high-power plasma systems.

## Commercial Ventures (Tertiary Vector)

A high-confidence assessment concludes that commercial ventures are not a viable knowledge transfer pathway associated directly with Anatoly Zhitlukhin or his immediate network. This assessment is based on a definitive lack of evidence: no patents are assigned to him personally or to any private entity, no corporate affiliations are documented, and his entire professional activity appears to be contained within the state-run Rosatom/TRINITI structure. This structural observation is critical, as it distinguishes the Russian state-controlled model from the more fluid public-private U.S. ecosystem, where entities like MSNW and Helion facilitate technology and personnel transfer between government and commercial tracks. For Zhitlukhin's specific network, the primary counterintelligence focus must remain on state-to-state and institutional interactions, not on monitoring commercial or venture capital channels.

## Works cited

1. Rosatom science institute has created a pulse plasma accelerator ...,  
<http://www.naukarosatom.ru/en/news/rosatom-science-institute-has-created-a-pulse-plasma-accelerator-for-a-future-nuclear-research-facil/> 2. Monday 13 September,  
<https://www.kipt.kharkov.ua/conferences/ipp/2010/Program.pdf> 3. 19th INTERNATIONAL CONFERENCE ON PLASMA SURFACE ...,  
[https://www.researchgate.net/publication/317308316\\_19th\\_INTERNATIONAL\\_CONFERENCE\\_ON\\_PLASMA\\_SURFACE\\_INTERACTIONS\\_IN\\_CONTROLLED\\_FUSION\\_DEVICES\\_PSI-19\\_SAN\\_DIEGO\\_USA\\_24-28\\_MAY\\_2010](https://www.researchgate.net/publication/317308316_19th_INTERNATIONAL_CONFERENCE_ON_PLASMA_SURFACE_INTERACTIONS_IN_CONTROLLED_FUSION_DEVICES_PSI-19_SAN_DIEGO_USA_24-28_MAY_2010) 4. EXPERIMENTAL STUDY OF INTEGRATED

CHARACTERISTICS OF PLASMA STREAM AND DISCHARGE OF A QUASI-STATIONARY HIGH-CURRENT PLASMA ACCELERATOR WITH ITS OWN MAGNETIC FIELD -

ResearchGate,

[https://www.researchgate.net/publication/336574199\\_EXPERIMENTAL\\_STUDY\\_OF\\_INTEGRATED\\_CHARACTERISTICS\\_OF\\_PLASMA\\_STREAM\\_AND\\_DISCHARGE\\_OF\\_A\\_QUASI-STATIONARY\\_HIGH-CURRENT\\_PLASMA\\_ACCELERATOR\\_WITH\\_ITS\\_OWN\\_MAGNETIC\\_FIELD](https://www.researchgate.net/publication/336574199_EXPERIMENTAL_STUDY_OF_INTEGRATED_CHARACTERISTICS_OF_PLASMA_STREAM_AND_DISCHARGE_OF_A_QUASI-STATIONARY_HIGH-CURRENT_PLASMA_ACCELERATOR_WITH_ITS_OWN_MAGNETIC_FIELD)

5. EX/P4-13 Study of Dust Morphology, Composition and Surface Growth under ITER-relevant Energy Load in Plasma Gun QSPA-facility,

[https://www-pub.iaea.org/mtcd/meetings/fec2008/ex\\_p4-13.pdf](https://www-pub.iaea.org/mtcd/meetings/fec2008/ex_p4-13.pdf) 6. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them |

Request PDF - ResearchGate,

[https://www.researchgate.net/publication/289244891\\_Erosion\\_products\\_of\\_plasma\\_facing\\_materials\\_formed\\_under\\_ITER-like\\_transient\\_load\\_and\\_deuterium\\_retention\\_in\\_them](https://www.researchgate.net/publication/289244891_Erosion_products_of_plasma_facing_materials_formed_under_ITER-like_transient_load_and_deuterium_retention_in_them)